A New Paradigm of Face Recognition Using Multi-class Classifier
نویسندگان
چکیده
منابع مشابه
Recognition of human activities using SVM multi-class classifier
Even great efforts have been made for decades, the recognition of human activities is still an unmature technology that attracted plenty of people in computer vision. In this paper, a system framework is presented to recognize multiple kinds of activities from videos by an SVMmulti-class classifier with a binary tree architecture. The framework is composed of three functionally cascaded modules...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملA Novel Multi-stage Classifier for Face Recognition
A novel face recognition scheme based on multi-stages classifier, which includes methods of support vector machine (SVM), Eigenface, and random sample consensus (RANSAC), is proposed in this paper. The whole decision process is conducted cascade coarse-to-fine stages. The first stage adopts one-against-one-SVM (OAO-SVM) method to choose two possible classes best similar to the testing image. In...
متن کاملFace Recognition using the Moving Window Classifier
The Moving Window Classifier(MWC) has previously been proposed as an efficient scheme for text recognition applications. In this paper, the potential of the MWC algorithm in face recognition is investigated. To maintain the memory requirements of the classifier within acceptable practical limits, the concept of bit-plane encoding is utilized. The experimental results reported show very encourag...
متن کاملFace Recognition Using Hybrid Classifier Systems
This paper considers hybrid classification architectures and shows their feasibility on large data bases consisting of facial images. Our architecture, consists of an ensemble of connectionist networks radial basis functions (RBF) and decision trees (DT). This architecture enjoys robustness via (i) consensus provided by ensembles of RBF networks, and (ii) categorical classification using decisi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Research in Applied Science and Engineering Technology
سال: 2017
ISSN: 2321-9653
DOI: 10.22214/ijraset.2017.9275